
Radiative Transfer and Climate II

Reading: GPC Ch3. 

Outline:
•Absorption and emission of radiation, Lambert-Bouguet- 
Beer law
•Integral equation of transfer
•Simple flux form of the radiative transfer equation as 
applied to terrestrial radiation
•Radiative equilibrium: conceptual model and detailed 
calculations
•Radiative and radiative-convective equilibrium 
temperature profiles



Absorption of 
radiation
(simplified 
treatment)

Simple case: no absorption

Distance s 

----------> ----------> ---------->

Intensity F remains the same

With absorption

Distance s 

----------> -------> ---->

Intensity F decreases.  The Lambert-Bouguet-Beer law describes this
behavior:

€ 

dF
ds

= −kρaF (3.12)

k is the absorption coefficient (units: m2/kg)
ρa is the density of the absorber (units: kg/m3)
F is the intensity of radiation

If we assume k and ρa are constant, we can solve for (3.12) for F:

€ 

F(s) = F(s= 0)e−kρa s
(A)



Optical depth, mean free path

Let’s introduce a useful simplification:

τ = kρas τ is the optical depth

Then equation (A) can be written as

F(τ) = F(τ=0)e-τ (3.17)

What does optical depth mean? It is a measure of ‘optical’ distance, done in
such a way that 1 unit of τ means the intensity F decreases by a factor 1/e.  It
has no units.

The mean free path is the actual distance travelled for one optical depth:
Mean free path = 1/kρa

The same equation is obtained from more realistic calculations.



Emissi on and absorpti on

Let’s no w let the matter emit as we ll:

Distance s 

--> ----> ------> --------> -------->

here F in creases s ince medium emit s here F reaches constant,  F=B

€ 

dF
ds

= −kρ aF + kρaB (3.29)

addition al term for emi ssion – B is  the Plan ck fun ction

Note the follo wing:
• There is no  scattering  in thi s mod el – just absorption  and emission
• If F=B, then th e intensity F rema ins con stant.   In other words, the

radiation  absorbed by th e medium  is balanc ed by th e radiation emitt ed
by the m edium.

• The absorpt ion const ant k is gen erally  a fun ction  of frequency ν, as is
B.  So  F is generally  a func tion  of the frequen cy.

• The special case of k ind epend ent  of frequency  is called a gray case
• B=0 is a good  approxim ation  for  solar radiation  in th e atmosphere

(why?) – but  scattering  is neglected
• If B is includ ed, it giv es a decent description  of the terrestrial (LW )

radiation .  Scattering  is wea k at the LW frequencie s.



Integral equation of transfer

Let’s now solve for the equation (3.29) for the case of the atmosphere.
Assume:

• The path of the radiation is normal to the surface – so going straight
• The temperature T, and therefore B, is only a function of height

(plane-parallel approximation)

Convention: τ=0 at surface, so τ increases with height

(3.29) can be written as:

€ 

dF
dτ

= −F + B (B)

Solve (B) by using the integrating factor e-τ:

€ 

dF
dτ

+ F = B

so 

€ 

d(eτF)
dτ

= Beτ

Integrate from τ=0 (surface) to τ(z) (optical depth at height z).  Recall that B
is a function of temperature T, and that temperature varies with height:

eτ(z) F(τ(z)) – e0F(τ=0) =  ∫τ(z)
0 B(T) eτ dτ

or F⇑(τ(z)) = F⇑(τ=0) e-τ(z) + ∫τ(z)
0 B(T) eτ-τ(z) dτ (3.34)



(3.34) gives the upward flux at height z, given the flux at the surface (hence
F⇑).  The first term on the RHS is contribution from the surface but with an
attenuation e-τ(z) because of the absorbers in between the surface and height
z, whereas the latter comes from contribution from layers in the atmosphere
between the surface and τ(z), again with attenuation (but this time eτ-τ(z) –
can you see why it is of this form?)

By the same token you can work out the downward flux at height z by
adding up all contributions from the top of atmosphere (TOA) to level z:

F⇓ = F⇓(τ(TOA)) eτ(z)-τ(TOA) + ∫τ(TOA)
τ(z)B(T) eτ(z)-τ dτ (C )

Note that for terrestrial radiation, the first term on the RHS of the above
equation is zero (since there is no incoming flux of terrestrial radiation at the
top of the atmosphere),

So, the net flux at level z is given by

F(z) = F⇑ (z) - F⇓ (z)

The importance of the flux to climate is how the radiation heats up the
atmosphere.  The expression for this is:

€ 

∂T
∂t

= − 1
ρcp

∂F
∂z (3.38)

where ρ is the air density and cp is its specific heat capacity.



Simple flux form of the radiative transfer
equation as applied to terrestrial radiation

If we ignore the frequency dependence of B over the terrestrial frequency
band, we can come up with an approximate solution for the outgoing
terrestrial radiation at the top of the atmosphere by integrating (3.34) over
the all frequencies to get:

F⇑(TOA) = σTs
4 e-τ(TOA) + ∫τ(TOA)

0 σT4 eτ-τ(TOA) dτ (3.39)

Likewise, we can also derive the downward flux at the surface from equation
(C):

F⇓ (z=0)= ∫τ(TOA)
0 σT4 e-τ dτ (3.40)

The important thing here to understand for (3.39) and (3.40) is which part of
the integration contributes to the F⇑(TOA) or F⇓ at the surface.  Of course,
every part of the atmospheric column contributes, but because of the
absorption by the atmosphere, only the portion of the atmosphere within ~1
optical depth from the top of the atmosphere (in the case of F⇑(TOA)) or the
surface (in the case of F⇓ at the surface) effectively contributes.



Radiative equilibrium - a conceptual model

2 atmospheric layers at 0.5km and 2km above surface, 
blackbody to LW, transparent to SW.  What will the 
temperature of the two layers be?

Solve it the same way as before: compute energy balance 
for each layer and the surface

 



TOA energy balance

Layer 1 energy balance

Layer 2 energy balance

Surface energy balance

Solution:

Recall for single-layer case: Ts
4  = 2 Te

4



Solution:   Ts
4  = 3 Te

4        with two layers
Values: 
Ts=335.6 K=62.5 0C     T1=Te=255 K=-18 0C     T2=303.2 K=30 0C

By extension, if such a model has an arbitrary number n of layers,
Ts

4=(n+1)Te
4    

We now add a thin layer of atmosphere  of emissivity ε at the TOA
(~ stratosphere) absorbing no solar radiation:
εσTe

4=ε2σTstrat
4 (absorption from below=emission up and down).

We also add a thin layer of atmosphere  of emissivity ε and 
temperature TSA near the surface, absorbing no solar radiation:
εσTs

4+ εσT2
4 =ε2σTSA

4 (absorption from surface and layer 
above=emission up and down).



Solution:  TSA
4=(Ts

4+T2
4)/2           Tstrat

4=Te
4/2

Values:     TSA=320 K=47 0C         Tstrat=214 K=-59 0C

In pure radiative equilibrium Ts and TSA are different.
This discontinuity is caused by the absorption of solar radiation
at the surface and is usually greatly suppressed in reality 
because of  efficient heat transport by conduction and convection.

Radiative equilibrium is not a good approximation for Ts which 
turns out to be much hotter than observed, because latent and 
sensible heat fluxes remove substantial amounts of energy from 
the surface.



Level 1
Level 2

Surface

(stratosphere)

(surface air temperature)



Radiative and radiative-convective equilibrium 
temperature profiles

Radiative equilibrium temperature profile:
• radiative energy balance achieved at all levels
• no energy transport by atmospheric motions
• no latent and sensible heat fluxes
To improve the model, one can solve he radiative transfer
equation for global mean terrestrial conditions 
(because horizontal transport of energy by atmospheric 
motions affects the local climate).
This involves construction of appropriate models of the 
transmission of the various frequency bands of importance in the 
atmosphere, insertion of these into a computational 
implementation of the radiative transfer equation and iteration to 
obtain a steady solution.  



In the global mean model all variables depend only on 
altitude.
Globally average insolation and solar zenith angle are used.

The following need to be specified:
•Water content - concentrated at lower altitudes
•CO2 - generally well-mixed in latitude and height
•Ozone - Important in stratosphere
•Aerosols - affects transmission of SW and LW; 
  sulfate aerosols
•Surface albedo
•Clouds - we’ll cover this in a bit….

However, there is one more problem…..



In the troposphere, radiative equilibrium temperature profiles 
are hydrostatically unstable. In the real atmosphere, 
atmospheric motions move heat away from the surface and mix 
it through the troposphere. In the sketch of global flux energy 
balance we have seen that the energy removal from the surface
by the transport of heat and water vapor by air motions is 
29:50=x:100      x=58%
and that by net LW emission is
21:50=x:100      x=42%.
The global mean temperature profile is not in radiative 
equilibrium but in radiative-convective equilibrium.
The vertical flux of energy by atmospheric motions must be 
included in the model.
The simplest way to do so is “convective adjustment”.



The lapse rate is not allowed to exceed a critical value, 
e.g. 6.5 K/Km . Radiative processes would make it greater; 
so it is assumed that non-radiative upward heat transport 
occurs, that mantains Γ below the threshold while conserving 
energy.
This artificial vertical redistribution of energy is meant to 
represent  the effect of atmospheric motions without explicitely
calculating non-radiative fluxes and air motions.
This “adjusted layer” extends from the surface to the 
tropopause.
No a priori reason exists for choosing  Γ = 6.5 K/Km,
except other than the fact that the resulting profile turns out to
be very close to the observed global mean value.
To better understand all this, we will have to discuss the lapse 
rate in the atmosphere and the concepts of potential temperature
and static stability.



Radiative equilibrium  is too cold in the troposphere
and too warm at the surface.

Dry adiabatic 
equilibrium:
Γ=9.8 K/km

Mean Γ in the 
troposphere
from
radiosondes:
Γ=6-7 K/km


