Global energy balance I
Reading: GPC Ch2
-Outline:

- Orbital characteristics and insolation
-Blackbody radiation
-Emission temperature
-Greenhouse effect
-Global radiative budget
-Distribution of radiation

Global energy balance

Table 2.1
Sun:
Characteristics of the Sun

Mass	$1.99 \times 10^{30} \mathrm{~kg}$
Radius	$6.96 \times 10^{8} \mathrm{~m}$
Luminosity	$3.9 \times 10^{26} \mathrm{~J} \mathrm{~s}$
Mean distance from Earth	$1.496 \times 10^{11} \mathrm{~m}$

Energy source is nuclear fusion (hydrogen, mainly)
Luminosity increased about 30\% over earth lifetime Projected lifetime: ~ 11 billion years
Sun is about middle age

Energy balance:

Energy from the Sun = energy returned to space by Earth's radiative emission

The absorpion of solar radiation takes place mostly at the surface of the Earth.

The emission to space takes place mostly in the atmosphere.
Because its atmosphere efficiently absorbs and emits IR radiation, the surface of the Earth is much warmer than it would be in the absence of the atmosphere (greenhouse effect).

In one year, the solar energy absorbed near the equator is greater than the solar energy absorbed near the poles.

Therefore the atmosphere and the oceans transport energy poleward to reduce the effects of this heating gradient on surface temperature.

Much of the character of the Earth's evolution and climate has been determined by its position within the solar system.

Define obliquity (tilt) as the angle between the rotation axis of the planet and the plane of the orbit around the sun

Eccentricity
Mean distance: $\mathbf{1 . 4 9 6 \times 1 0} \mathbf{1 1} \mathbf{m}=\mathbf{1 A U}$ Max (aphelion): $1.521 \times 10^{11} \mathrm{~m}=1.017 \mathrm{AU}$ Min (perihelion): $1.471 \times 10^{11} \mathrm{~m}=0.983 \mathrm{AU}$

Define eccentricity (e) by $r_{\text {aphelion }}=(1+e) r_{\text {mean }} ; e \sim 0.0167$ today

Phase of the seasons relative to the Earth's position in the orbit

Figure I.2 Geometry of the Earth-Sun system. The Earth's orbit, the large ellipse with major axis AP and the Sun at one focus, defines the plane of the ecliptic. The plane of the Earth's axial tilt (obliquity) is shown passing through the Sun corresponding to the time of the southern summer solstice. The Earth moves around its orbit in the direction of the solid arrow (period one year) whilst spinning about its axis in the direction shown by the thin curved arrows (period one day). The broken arrows shown opposite the points of aphelion (A) and perihelion (P) indicate the direction of the very slow rotation of the orbit

Energy balance of the earth
First law of thermodynamics:

$$
\begin{aligned}
& \mathrm{dQ}=\mathrm{dU}-\mathrm{dW} \text { for a closed system } \\
& \text { Work done by the Earth on its environment: negligible }
\end{aligned}
$$

Incoming solar

Outgoing radiative energy
Incoming solar radiation $=$ outgoing planetary radiation

Flux, Flux density, solar constant

Solar constant $\left(\mathrm{S}_{\mathrm{o}}\right)=$ flux density at earth-sun distance

$$
=\mathrm{L}_{\mathrm{o}} / 4 \pi \mathrm{~d}^{\mathrm{d}}=1367 \mathrm{~W} / \mathrm{m}^{2}
$$

Cavity Radiation = radiation field within a closed cavity in thermodynamic equilibrium
DEF: a blackbody is a hypothetical body consisting of a sufficient number of molecules absorbing and emitting electromagnetic radiation over all frequencies so that
2. All incident radiation completely absorbed
3. In all wavelength bands and in all directions the maximum possible emission is realized

Stefan-Boltzmann Law for blackbody radiation:
$\mathrm{E}_{\mathrm{BB}}=\sigma \mathrm{T}^{4} \quad \sigma=$ Stefan-Boltzmann constant

$$
=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}
$$

DEF: Emmissivity (ε) describes how 'far' or 'close' it is to being a blackbody:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{R}}=\varepsilon \sigma \mathrm{T}^{4} \tag{2.6}
\end{equation*}
$$

Emission temperature

DEF: Emission temperature is the blackbody temperature required for the planet to get rid of the solar flux it absorbs by blackbody radiation

Fig. 2.2 Diagram showing the shadow area of a spherical planet.
Absorbed solar rad $=S_{0}\left(1-\alpha_{p}\right) \pi r_{p}^{2}$
DEF: albedo $\left(\alpha_{p}\right)=$ fraction of solar radiation reflected
Emitted terrestrial rad $=\sigma T_{e}{ }^{4} 4 \pi r_{p}{ }^{2}$
Equate to get $\left(\mathbf{S}_{\mathbf{0}} / \mathbf{4}\right)\left(\mathbf{1}-\alpha_{p}\right)=\sigma \mathbf{T}_{\mathrm{e}}{ }^{\mathbf{4}}$

So $/ 4=1367 / 4=342 \mathrm{~W} / \mathrm{m}^{2}$
Globally averaged insolation at TOA

Greenhouse effect

Add a 'slab' atmosphere with the properties:
ii) Lets SW through (transparent)
iii) But blackbody for terrestrial radiation

Top of Atmosphere (TOA) balance: $\quad \frac{S_{0}}{4}\left(1-\alpha_{p}\right)=\sigma T_{A}^{4}=\sigma T_{e}^{4}$
Atmospheric balance:

$$
\sigma T_{s}^{4}=2 \sigma T_{A}^{4} \Rightarrow \sigma T_{s}^{4}=2 \sigma T_{e}^{4}
$$

Surface balance:

$$
\frac{S_{0}}{4}\left(1-\alpha_{p}\right)+\sigma T_{A}^{4}=\sigma T_{s}^{4} \Rightarrow \sigma T_{s}^{4}=2 \sigma T_{e}^{4}
$$

Fig. 2.3 Diagram of the energy fluxes for a planet with an atmosphere that is transparent for solar radiation but opaque to terrestrial radiation.

Example: what is T_{s} for earth parameters?

$$
\sigma \mathrm{T}_{\mathrm{s}}^{4}=2 \sigma \mathrm{~T}_{\mathrm{e}}^{4} \quad \text { or } \quad \mathrm{T}_{\mathrm{s}}=\left(2 \mathrm{~T}_{\mathrm{e}}^{4}\right)^{0.25}
$$

Since $T_{\mathrm{e}}=255 \mathrm{~K}$ from before, $\mathrm{T}_{\mathrm{s}}=303 \mathrm{~K}$ or 30 degrees C !
Example: what albedo α^{*} do I need to get a surface temperature comparable to observed mean earth surface temperature of 288 K ?

Note that from the surface energy balance and the TOA energy balance that
$\left(\mathrm{S}_{\mathrm{o}} / 4\right)\left(1-\alpha^{*}\right)+\sigma \mathrm{T}_{\mathrm{A}}{ }^{4}=2\left(\mathrm{~S}_{\mathrm{o}} / 4\right)\left(1-\alpha^{*}\right)=\sigma \mathrm{T}_{\mathrm{s}}^{4} \quad$ or

$$
\begin{aligned}
\alpha^{*}=1-\left(2 \sigma \mathrm{~T}_{\mathrm{s}}^{4}\right) / \mathrm{S}_{\mathrm{o}}= & 1-\left(2 \times 5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \times(288 \mathrm{~K})^{4}\right) / 1367 \mathrm{Wm}^{-2} \\
& =0.42
\end{aligned}
$$

Global radiative flux energy budget

Fig. 2.4 Radiative and nonradiative energy flow diagram for Earth and its atmosphere. Units are percentages of the global-mean insolation (100 units $=342 \mathrm{~W} \mathrm{~m}^{-2}$).

Distribution of radiation

Radiation at TOA depends on latitude, season, time of day

DEF: solar zenith angle θ_{s} : angle between normal to earth's surface and line between earth and sun (incident SW radiation)

$$
Q=S_{0}\left(\frac{\bar{d}}{d}\right)^{2} \cos \theta_{s}
$$

Solar flux per unit area

Fig. 2.5 Diagram showing the relationship of solar zenith angle to insolation on a plane parallel to ¿ surface of a planet.

Solar zenith angle is calculated from:

Latitude (angle ϕ : from -90 to 90 degrees)
Season (DEF: declination angle δ of the sun $=$ latitude of the point of the sfc of the earth directly under the sun at noon - can be written as a function of the day of the year)
Time of day (DEF: hour angle h , defined as the longitude of the subsolar point relative to its position at noon)

Fig. A. 1 Spherical geometry for solar zenith angle calculation.
$\operatorname{Cos} \theta_{\mathrm{s}}=\sin \phi \sin \delta+\cos \phi \cos \delta \cos h$
Special cases:
-Night: $\operatorname{Cos} \theta_{\mathrm{s}}<0$
-Sunrise or sunset: $\operatorname{Cos} \theta_{\mathrm{s}}=0$ so that $\cos \mathrm{h}_{0}=-\tan \phi \tan \delta$
(I.e. time of sunrise/sunset depends on latitude and season)

light: latitudes polewards of $90-\delta$

Insolation

$$
Q=S_{0}\left(\frac{\bar{d}}{d}\right)^{2} \cos \theta_{s}
$$

Average daily insolation (function of latitude and season):

$$
\bar{Q}^{\text {day }}=\frac{S_{0}}{\pi}\left(\frac{\bar{d}}{d}\right)^{2}\left[h_{0} \sin \phi \sin \delta+\cos \phi \cos \delta \sin h_{0}\right]
$$

